Reproducing Pairs of Measurable Functions and Partial Inner Product Spaces
نویسنده
چکیده
We continue the analysis of reproducing pairs of weakly measurable functions, which generalize continuous frames. More precisely, we examine the case where the defining measurable functions take their values in a partial inner product space (PIP spaces). Several examples, both discrete and continuous, are presented.
منابع مشابه
$C^{*}$-semi-inner product spaces
In this paper, we introduce a generalization of Hilbert $C^*$-modules which are pre-Finsler modules, namely, $C^{*}$-semi-inner product spaces. Some properties and results of such spaces are investigated, specially the orthogonality in these spaces will be considered. We then study bounded linear operators on $C^{*}$-semi-inner product spaces.
متن کاملA Comparative Study of Fuzzy Inner Product Spaces
In the present paper, we investigate a connection between two fuzzy inner product one of which arises from Felbin's fuzzy norm and the other is based on Bag and Samanta's fuzzy norm. Also we show that, considering a fuzzy inner product space, how one can construct another kind of fuzzy inner product on this space.
متن کاملNORM AND INNER PRODUCT ON FUZZY LINEAR SPACES OVER FUZZY FIELDS
In this paper, we introduce the concepts of norm and inner prod- uct on fuzzy linear spaces over fuzzy elds and discuss some fundamental properties.
متن کاملHypergeometric reproducing kernels and analytic continuation from a half-line
Indefinite inner product spaces of entire functions and functions analytic inside a disk are considered and their completeness studied. Spaces induced by the rotation invariant reproducing kernels in the form of the generalized hypergeometric function are completely characterized. A particular space generated by the modified Bessel function kernel is utilized to derive an analytic continuation ...
متن کاملAtomic Systems in 2-inner Product Spaces
In this paper, we introduce the concept of family of local atoms in a 2-inner product space and then this concept is generalized to an atomic system. Besides, a characterization of an atomic system lead to obtain a new frame. Actually this frame is a generalization of previous works.
متن کامل